Northeast Fisheries Center Reference Document 90-04

Description of the Oceanographic Conditions on the Northeast Continental Shelf: 1977-1985

by

James Manning Tamara Holzwarth

National Marine Fisheries Service Northeast Fisheries Center

February 1990

The National Marine Fisheries Service (NMFS) does not approve, recommend or endorse any proprietary product material mentioned in this publication. No reference shall be made to NMFS, or to this publication furnished by NMFS, in any advertising or sales promotion which would indicate or imply that NMFS approves, recommends or endorses any proprietary product or proprietary material mentioned herein, or which has as its purpose an intent to cause directly or indirectly the advertised product to be used or purchased because of this NMFS publication. 1

Page iii

Table of Contents

Introduction			*********************************	. 1
Methods		*****		1
Data portravals		******	******	3
Acknowledgements		1 1		3
References	<u></u>			. 4
******				1

.

List of Figures

Figure 1. Timing of MARMAP sampling, 1977-1987	5
Figure 2. Standard MARMAP stations	6
Figure 3. Five regions on the Northeast Continental Shelf	7
Figure 4. Station positions: YUB7702	8
Figure 5. Surface and bottom temperature (°C) distribution: YUB7702	9
Figure 6. Normalized surface and bottom temperature anomaly: YUB7702 1	10
Figure 7. Surface and bottom salinity (PSU) distribution: YUB7702 1	11
Figure 8. Temperature (°C) transects: YUB7702 1	12
Figure 9. Salinity (PSU) transects: YUB7702 1	13
Figure 10. Station positions: ARG7701 1	14
Figure 11. Surface and bottom temperature (°C) distribution: ARG7701 1	15
Figure 12. Normalized surface and bottom temperature anomaly: ARG7701	16
Figure 13. Surface and bottom salinity (PSU) distribution: ARG7701	17
Figure 14. Temperature (°C) transects: ARG7701	18
Figure 15. Salinity (PSU) transects: ARG7701	20
Figure 16. Station positions: KEL7711 AND MTM7711	22
Figure 17. Surface and bottom temperature (°C) distribution:	÷
KEL&MTM7711	24
Figure 18. Normalized surface and bottom temperature anomaly:	
KEL&MTM7711	26
Figure 19. Surface and bottom salinity (PSU) distribution: KEL&MTM7711	28
Figure 20. Temperature (℃) transects: KEL&MTM7711	30
Figure 21. Salinity (PSU) transects: KEL&MTM7711	32
Figure 22. Station positions: DEL7802	34
Figure 23. Surface and bottom temperature (°C) distribution: DEL7802	35
Figure 24. Normalized surface and bottom temperature anomaly:DEL7802	36
Figure 25. Surface and bottom salinity (PSU) distribution: DEL7802	37
Figure 26. Temperature (°C) transects: DEL7802	38
Figure 27. Salinity (PSU) transects: DEL7802	40
Figure 28. Station positions: ARG7804	42
Figure 29. Surface and bottom temperature (°C) distribution: ARG7804	43
Figure 30. Normalized surface and bottom temperature anomaly:ARG7804	44
Figure 31. Surface and bottom salinity (PSU) distribution: ARG7804	45
Figure 32. Temperature (°C) transects:ARG7804	46
Figure 33. Salinity (PSU) transects: ARG7804	48
Figure 34. Station positions: ALB7807	50
Figure 35. Surface and bottom temperature (°C) distribution: ALB7807	51

Page iv

Figure 36. Normalized surface and bottom temperature anomaly:ALB7807	52
Figure 37. Surface and bottom salinity (PSU) distribution: ALB7807	53
Figure 38. Temperature (°C) transects: ALB7807	54
Figure 39. Salinity (PSU) transects: ALB7807	56
Figure 40. Station positions: BEL7801	58
Figure 41. Surface and bottom temperature (°C) distribution: BEL7801	59
Figure 42. Normalized surface and bottom temperature anomaly:BEL7801	60
Figure 43. Surface and bottom salinity (PSU) distribution: BEL7801	61
Figure 44. Temperature (°C) transects: BEL7801	62
Figure 45. Salinity (PSU) transects: BEL7801	65
Figure 46. Station positions: BEL7803	68
Figure 47. Surface and bottom temperature (°C) distribution: BEL7803	69
Figure 48. Normalized surface and bottom temperature anomaly:BEL7803	70
Figure 49. Surface and bottom salinity (PSU) distribution: BEL7803	71
Figure 50. Temperature (°C) transects: BEL7803	72
Figure 51. Salinity (PSU) transects: BEL7803	73
Figure 52. Station positions: BEL7804	75
Figure 53. Surface and bottom temperature (°C) distribution: BEL/804	76
Figure 54. Normalized surface and bottom temperature anomaly:BEL/804	77
Figure 55. Surface and bottom salinity (PSU) distribution: BEL/804	78
Figure 56. Temperature (*C) transects: DEL/804	79
Figure 57. Salinity (FSU) transects: DEL/804	80
Figure 58. Station positions: DEL/905	82
Figure 59. Surface and bottom temperature (*C) distribution: DEL/905	00
Figure 61. Surface and bottom salinity (PSU) distribution: DEL 7903	04 25
Figure 62 Temperature (°C) transacts: DEI 7903	00 94
Figure 63 Salinity (PSU) transects: DEL 7903	88
Figure 64. Station positions: DEI 7905	90
Figure 65 Surface and bottom temperature (°C) distribution: DEL 7905	91
Figure 66 Normalized surface and bottom temperature anomaly: DEL 7905	92
Figure 67. Surface and bottom salinity (PSU) distribution: DEL7905	93
Figure 68. Temperature (°C) transects: DEL 7905	94
Figure 69. Salinity (PSU) transects: DEL7905	97
Figure 70. Station positions: ALB7906	100
Figure 71. Surface and bottom temperature (°C) distribution: ALB7906	101
Figure 72. Normalized surface and bottom temperature anomaly: ALB7906	102
Figure 73. Surface and bottom salinity (PSU) distribution: ALB7906	103
Figure 74. Temperature (°C) transects: ALB7906	104
Figure 75. Salinity (PSU) transects: ALB7906	106
Figure 76. Station positions: BEL7901	109
Figure 77. Surface and bottom temperature (°C) distribution: BEL7901	110
Figure 78. Normalized surface and bottom temperature anomaly:BEL7901	111
Figure 79. Surface and bottom salinity (PSU) distribution: BEL7901	112
Figure 80. Temperature (°C) transects: BEL7901	113
Figure 81. Salinity (PSU) transects: BEL7901	115
Figure 82. Station positions: ALB7911	117
-	

(*

[]]

:

Figure 83. Surface and bottom temperature (°C) distribution: ALB7911	118
Figure 84. Normalized surface and bottom temperature anomaly: ALB7911	119
Figure 85. Surface and bottom salinity (PSU) distribution: ALB7911	120
Figure 86. Temperature (°C) transects: ALB7911	121
Figure 87. Salinity (PSU) transects: ALB7911	124
Figure 88. Station positions: ALB7913	127
Figure 89. Surface and bottom temperature (°C) distribution: ALB7913	129
Figure 90. Normalized surface and bottom temperature anomaly: ALB7913	130
Figure 91. Surface and bottom salinity (PSU) distribution: ALB7913	131
Figure 92. Temperature (°C) transects: ALB7913	132
Figure 93. Salinity (PSU) transects: ALB7913	134
Figure 94. Station positions: WIE8002	136
Figure 95. Surface and bottom temperature (°C) distribution: WIE8002	137
Figure 96. Normalized surface and bottom temperature anomaly:WIE8002	138
Figure 97. Surface and bottom salinity (PSU) distribution: WIE8002	139
Figure 98. Temperature (°C) transects: WIE8002	140
Figure 99. Salinity (PSU) transects: WIE8002	141
Figure 100. Station positions: ALB8002	142
Figure 101, Surface and bottom temperature (°C) distribution: ALB8002	143
Figure 102. Normalized surface and bottom temperature anomaly:ALB8002	144
Figure 103. Surface and bottom salinity (PSU) distribution: ALB8002	145
Figure 104. Temperature (°C) transects: ALB8002	146
Figure 105. Salinity (PSU) transects: ALB8002	149
Figure 106. Station positions: EVR8001	152
Figure 107. Surface and bottom temperature (°C) distribution: EVR8001	153
Figure 108. Normalized surface and bottom temperature anomaly: EVR8001	154
Figure 109. Surface and bottom salinity (PSU) distribution: EVR8001	155
Figure 110. Temperature (°C) transects: EV R8001	156
Figure 111. Salinity (PSU) transects: EVR8001	158
Figure 112. Station positions: DEL8003	160
Figure 113. Surface and bottom temperature (°C) distribution: DEL8003	161
Figure 114. Normalized surface and bottom temperature anomaly: DEL8003	162
Figure 115. Surface and bottom salinity (PSU) distribution: DEL8003	163
Figure 116. Temperature (°C) transects: DEL8003	164
Figure 117. Salinity (PSU) transects: DEL8003	166
Figure 118. Station positions: EVR8004	168
Figure 119. Surface and bottom temperature (°C) distribution: EVR8004	169
Figure 120. Normalized surface and bottom temperature anomaly: EVR8004	170
Figure 121. Surface and bottom salinity (PSU) distribution: EVR8004	171
Figure 122. Temperature (°C) transects: EVR8004	172
Figure 123. Salinity (PSU) transects: EVR8004	. 173
Figure 124. Station positions: EVR8006	. 174
Figure 125. Surface and bottom temperature (°C) distribution: EVR8006	. 175
Figure 126. Normalized surface and bottom temperature anomaly: EVR8006	. 176
Figure 127. Surface and bottom salinity (PSU) distribution: EVR8006	. 177
Figure 128. Temperature (°C) transects: EVR8006	. 178
Figure 129. Salinity (PSU) transects: EVR8006	. 180

÷.

۰,

٠,

Page vi

1

Figure 130. Station positions: ALB8010	. 182
Figure 131. Surface and bottom temperature (°C) distribution: ALB8010	. 183
Figure 132. Normalized surface and bottom temperature anomaly: ALB8010	. 184
Figure 133. Surface and bottom salinity (PSU) distribution: ALB8010	. 185
Figure 134. Temperature (°C) transects: ALB8010	. 186
Figure 135. Salinity (PSU) transects: ALB8010	. 189
Figure 136. Station positions: ALB8012	. 192
Figure 137. Surface and bottom temperature (°C) distribution: ALB8012	. 193
Figure 138. Normalized surface and bottom temperature anomaly: ALB812	. 194
Figure 139. Surface and bottom salinity (PSU) distribution: ALB8012	. 195
Figure 140. Temperature (°C) transects: ALB8012	. 196
Figure 141. Salinity (PSU) transects: ALB8012	. 199
Figure 142. Station positions: ALB8101	. 202
Figure 143. Surface and bottom temperature (°C) distribution: ALB8101	203
Figure 144. Normalized surface and bottom temperature anomaly: ALB8101	204
Figure 145. Surface and bottom salinity (PSU) distribution: ALB8101	205
Figure 146. Temperature (°C) transects: ALB8101	206
Figure 147. Salinity (PSU) transects: ALB8101	209
Figure 148. Station positions: KEL8103	212
Figure 149. Surface and bottom temperature (°C) distribution: KEL8103	213
Figure 150. Normalized surface and bottom temperature anomaly: KEL8103	214
Figure 151. Surface and bottom salinity (PSU) distribution: KEL8103	215
Figure 152. Temperature (°C) transects: KEL8103	216
Figure 153. Salinity (PSU) transects: KEL8103	218
Figure 154. Station positions: DEL8103	220
Figure 155. Surface and bottom temperature (°C) distribution: DEL8103	221
Figure 156. Normalized surface and bottom temperature anomaly: DEL8103	222
Figure 157. Surface and bottom salinity (PSU) distribution: DEL8103	223
Figure 158. Temperature (°C) transects: DEL8103	224
Figure 159. Salinity (PSU) transects: DEL8103	227
Figure 160. Station positions: ALB8114	230
Figure 161. Surface and bottom temperature (°C) distribution: ALB8114	231
Figure 162. Normalized surface and bottom temperature anomaly: ALB8114	232
Figure 163. Surface and bottom salinity (PSU) distribution: ALB8114	233
Figure 164. Temperature (°C) transects: ALB8114	234
Figure 165. Salinity (PSU) transects: ALB8114	235
Figure 166. Station positions: ALB8202	237
Figure 167. Surface and bottom temperature (°C) distribution: ALB8202	238
Figure 168. Normalized surface and bottom temperature anomaly: ALB8202	239
Figure 169. Surface and bottom salinity (PSU) distribution: ALB8202	240
Figure 170. Temperature (°C) transects: ALB8202	241
Figure 171. Salinity (PSU) transects: ALB8202	244
Figure 172. Station positions: DEL8203	247
Figure 173. Surface and bottom temperature (°C) distribution: DEL8203	248
Figure 174. Normalized surface and bottom temperature anomaly: DEL8203	249
Figure 175. Surface and bottom salinity (PSU) distribution: DEL8203	250
Figure 176. Temperature (°C) transects: DEL8203	251

5<u>7</u>3

Figure 177.	Salinity (PSU) transects: DEL8203	253
Figure 178.	Station positions: DEL8209	255
Figure 179.	Surface and bottom temperature (°C) distribution: DEL8209	256
Figure 180.	Normalized surface and bottom temperature anomaly: DEL8209	257
Figure 181.	Surface and bottom salinity (PSU) distribution: DEL8209	258
Figure 182.	Temperature (°C) transects: DEL8209	259
Figure 183.	Salinity (PSU) transects: DEL8209	261
Figure 184.	Station positions: DEL8301	263
Figure 185.	Surface and bottom temperature (°C) distribution: DEL8301	264
Figure 186.	Normalized surface and bottom temperature anomaly: DEL8301	265
Figure 187.	Surface and bottom salinity (PSU) distribution: DEL8301	266
Figure 188.	Temperature (°C) transects: DEL8301	267
Figure 189.	Salinity (PSU) transects: DEL8301	268
Figure 190.	Station positions: ALB8304	269
Figure 191.	Surface and bottom temperature (°C) distribution: ALB8304	270
Figure 192.	Normalized surface and bottom temperature anomaly: ALB8304	271
Figure 193.	Surface and bottom salinity (PSU) distribution: ALB8304	272
Figure 194.	Temperature (°C) transects: ALB8304	273
Figure 195.	Salinity (PSU) transects: ALB8304	276
Figure 196.	Station positions: DEL8309	279
Figure 197.	Surface and bottom temperature (°C) distribution: DEL8309	280-
Figure 198.	Normalized surface and bottom temperature anomaly: DEL8309	281
Figure 199.	Surface and bottom salinity (PSU) distribution: DEL8309	282
Figure 200.	Temperature (°C) transects: DEL8309	283
Figure 201.	Salinity (PSU) transects: DEL8309	286
Figure 202.	Station positions: DEL8401	289
Figure 203.	Surface and bottom temperature (°C) distribution: DEL8401	290
Figure 204.	Normalized surface and bottom temperature anomaly: DEL8401	. 291
Figure 205.	Surface and bottom salinity (PSU) distribution: DEL8401	. 292
Figure 206.	Temperature (°C) transects: DEL8401	. 293
Figure 207.	Salinity (PSU) transects: DEL8401	. 296
Figure 208.	Station positions: ALB8403	. 299
Figure 209.	Surface and bottom temperature (°C) distribution: ALB8403	. 300
Figure 210.	Normalized surface and bottom temperature anomaly: ALB8403	. 301
Figure 211.	Surface and bottom salinity (PSU) distribution: ALB8403	. 302
Figure 212.	Celle the (PCL) transects: ALB8403	. 303
Figure 213.	Salinity (PSU) transects: ALB8403	. 306
Figure 214.	Station positions: DEL8409	. 309
Figure 215.	Surface and bottom temperature (°C) distribution: DEL8409	. 310
Figure 216.	Normalized surface and bottom temperature anomaly: DEL8409	. 311
Figure 217.	Surface and bottom salinity (PSU) distribution: DEL8409	. 312
rigure 218.	Colimity (PEL) transects: DEL0409	. 313 5+-
Figure 219.	Salinity (FSU) transects: DEL8409	. 313
Figure 220.	Station positions: DEL8501	. 31/
Figure 221.	Surrace and bottom temperature (°C) distribution: DEL8501	. 318
Figure 222.	Normalized surface and bottom temperature anomaly: DEL8501	. 319
Figure 223.	Surface and bottom salinity (PSU) distribution: DEL8501	. 320

Page viii

Figure 224. Temperature (°C) transects: DEL8501	321
Figure 225. Salinity (PSU) transects: DEL8501	323
Figure 226. Station positions: DEL8503	325
Figure 227. Surface and bottom temperature (°C) distribution: DEL8503	326
Figure 228. Normalized surface and bottom temperature anomaly: DEL8503	327
Figure 229. Surface and bottom salinity (PSU) distribution: DEL8503	328
Figure 230. Temperature (°C) transects: DEL8503	329
Figure 231. Salinity (PSU) transects: DEL8503	331
Figure 232. Station positions: ALB8504	333
Figure 233. Surface and bottom temperature (°C) distribution: ALB8504	334
Figure 234. Normalized surface and bottom temperature anomaly: ALB8504	335
Figure 235. Surface and bottom salinity (PSU) distribution: ALB8504	336
Figure 236. Temperature (°C) transects: ALB8504	337
Figure 237. Salinity (PSU) transects: ALB8504	339
Figure 238. Station positions: DEL8507	342
Figure 239. Surface and bottom temperature (°C) distribution: DEL8507	343
Figure 240. Normalized surface and bottom temperature anomaly: DEL8507	344
Figure 241. Surface and bottom salinity (PSU) distribution: DEL8507	345
Figure 242. Temperature (°C) transects: DEL8507	346
Figure 243. Salinity (PSU) transects: DEL8507	349
Figure 244. Station positions: DEL8510	352
Figure 245. Surface and bottom temperature (°C) distribution: DEL8510	353
Figure 246. Normalized surface and bottom temperature anomaly: DEL8510	354
Figure 247. Surface and bottom salinity (PSU) distribution: DEL8510	355
Figure 248. Temperature (°C) transects: DEL8510	356
Figure 249. Salinity (PSU) transects: DEL8510	359
Figure 250. Mean values of temperature and salinity for the surface	
layer (0-50 m) in the western sector of the Gulf of Maine	362
Figure 251. Mean values of temperature and salinity for the subsurface	
layer (50-100 m) in the western sector of the Gulf of Maine	363
Figure 252. Mean values of temperature and salinity for the bottom	
layer (>100 m) in the western sector of the Gulf of Maine	364
Figure 253. Mean values of temperature and salinity for the surface	
layer (0-50 m) in the eastern sector of the Gulf of Maine	365
Figure 254. Mean values of temperature and salinity for the subsurface	
layer (50-100 m) in the eastern sector of the Gulf of Maine	366
Figure 255. Mean values of temperature and salinity for the bottom	
layer (>100 m) in the western sector of the Gulf of Maine	367
Figure 256. Mean values of temperature and salinity for the surface	
layer (0-30 m) on Georges Bank (1977-1987)	368
Figure 257. Mean values of temperature and salinity for the subsurface	
layer (30-100 m) on Georges Bank (1977-1987)	369
Figure 258. Mean values of temperature and salinity for the surface	
laver (0-30 m) in the northern sector of the Middle Atlantic Bight	370
Figure 259. Mean values of temperature and salinity for the subsurface	
laver (30-100 m) in the northern sector of the Middle Atlantic Bight	371

10 m

G**.

Page ix

Figure 260. Mean values of temperature and salinity for the surface	
layer (0-30 m) in the southern sector of the Middle Atlantic Bight	372.
Figure 261. Mean values of temperature and salinity for the subsurface	
layer (30-100 m) in the southern sector of the Middle Atlantic Bight	373

1.1.

List of Tables

 Table 1. MARMAP transect coverage, 1977-1985
 2

Abstract

Oceanographic observations from 42 surveys during 1977-1985 on the Northeast Continental Shelf are reported. Surface and bottom distributions and cross-shelf vertical distributions of both temperature and salinity are presented in the form of contour maps. Average values for specific regions of the shelf and layers of the water column are presented in the form of time series plots.

Introduction

In an attempt to monitor the seasonal and inter-annual variability of the physical environment on the Northeast Continental Shelf, the National Marine Fisheries Service occupied 184 standard stations from Cape Hatteras, North Carolina to Cape Sable, Nova Scotia as part of the Marine Resources Monitoring, Assessment, and Prediction (MAR-MAP) program (Sherman 1980).

Observations from July 1977 to December 1985, a total of 42 surveys, are reported graphically (see Table 1). Although portions of these data have been portrayed elsewhere (Patanjo 1980; Nickerson and Mountain 1983), they are included in this volume in order to make it a complete report. Observations from 1986 and 1987, the final two years of MARMAP cruises, are reported elsewhere in Manning and Lierheimer (1988) and Holzwarth and Manning (1989), respectively. Intrepretations and analyses of MARMAP data are given in Mountain and Jessen (1987) and Manning (unpublished).

The data portrayals are organized sequentially by cruise in atlas form. No attempt is made to analyze the data or even to discuss individual observations. Except for the case of surface and bottom temperature anomaly plots, actual observations (*i.e.* the raw data) are input to the contouring software.

Methods

Niskin bottles made of PVC with reversible thermometers were used to sample temperature and salinity at standard water depths (1, 5, 10, 15, 20, 25, 30, 35, 50, 75, 100, 150, 200, 250, 300 m) for each station occupied. Surface temperatures were checked with a concurrent bucket sample. Bottom observations were taken from the deepest bottle within 10 m of the bottom to a maximum of 300 m, except in water less than 75 m. There, a special bottom-tripped bottle was used to obtain a salinity sample from within 1 m of the bottom. Salinity samples were analyzed with a Guildline Autosal salinometer. Details of the procedures at sea may be found in Kirschner (1980) and Patanjo, Nickerson, and Steimle (1982).

Several other parameters such as nutrients, ichthyoplankton, zooplankton, oxygen, and chlorophyll were measured concurrently with the hydrographic work (see Sibunka and Silverman 1984; Morse, Fahay, and Smith 1987; Zetlin and O'Reilly, unpublished; Waldhauer, unpublished). Occasionally, in order to investigate a particular feature, extra stations were occupied in addition to the standard set. These extra stations, typically less than 10 per cruise, are indicated on the individual station plots by numbers greater than 199.

A set of cross-shelf transects, labeled A through G in Figure 2, are part of the standard grid. Each transect consists of closely spaced stations designed to sample the structure of the Shelf Water synoptically (one to three days per transect). The typical distance between these stations was 20 km. The seaward limit of the transects was typically near the shelf break, often far enough seaward to capture the features of the shelf/slope water interface.

Temperature anomalies were calculated

Page 2

 $(j=1,\ldots,$

Table 1. MARMAP	transect coverage,	1977-1985.
-----------------	--------------------	------------

Cruise	Date	Å	В	С	D	Е	F	G	
YU7702	31 JUL-3 SEP	٠				*	•		
AR7701	15 OCT-11 NOV	_	_	*	+	•	*		
MT7711	12-19 NOV		۰.					_	
KE7711	25 NOV-4 DEC			-					
DE7802	14 FEB-13 MAR				•				
AR7804	13 APR-24 MAY	•	_		٠		*		
AL7807	22 IUN-1 IUL		·		~-		*		
BE7801	9 AUG-5 SEP				·		*-		
BE7803	5 OCT-2 NOV								
BE7804	15-30 NOV		• •		•	*			
DE7903	23 FEB-15 MAR		*	*		*			
DE7905	4-29 MAY	-				_	-		
AL7906	12 IUN-14 IUL	-				-	-		
BE7901	9 AUG-3 SEP	_	-	-	-				
AL 7911	1-29 OCT		-	-	-				
AL7913	14 NOV-21 DEC				-		. 		
W18002	18 FEB-11 MAR				+	_	*		
AT 8002	27 FEB- 5 APR		· _	*			-		
FV8001	14 APR-15 MAY	_	-		-	-			
DE8003	21 MAY 13 IUN		_		-	_			
FV8004	24 IUN 30 IUN								•
EV8004	18 II II _ 11 AUG	_	*	_	_		\$		
AT 8010	24 SEP-30 OCT			_	-	_		_	
AL8012	17 NOV-23 DEC		_		-				
A BOOTE							•		
AL8101	17 FEB-26 MAR		* .	-				-	
KE8103	18 MAR- 9 APR	٠			. •	•	· _	+	
DE8103	20 MAY-18 JUN		. '-	-	•			.*	
AL8114	16 NOV-22 DEC				-			-	
AL8202	16 FEB-25 MAR	, <u> </u>					-		
DE8203	17 MAY-22 IUN		•	٠	_		_	*	
DE8209	15 NOV-22 DEC		-	. *	٠		-	•.	
DE8301	24 JAN-11 FEB	•	•			+	*		
AT.8304	23 MAY-22 ILIN	_			·				
DE8309	14 NOV-21 DEC	-	-		 ,			·	
DEB401	QIANLIO EER			_				_	
DE0401	7 JAN-10 FED		-	-			-	-	
AL6403 DF8409	29 NOV- 7 DEC	-		-	*	*	*	. —	
			-						
DE8501	7 JAN- 8 FEB							•	
DE8503	1 APR- 2 MAY	-		-	-	-	-	•	
AL8504	8 MAY- 6 JUN		-		*	*		*	
DE8507	26 AUG-22 SEP				-		-	*	
DE8510	5 NOV-12 DEC				_	-	-		1.1

<u>لات</u> 20 ÷.

- = complete transects
* = incomplete transects, at least one standard station missing

for the surface and bottom temperature observations at each standard MARMAP station on all of the surveys. An anomaly is the difference between the observed temperature and the expected temperature at the station for the day of the year the observation was made. The expected temperature was determined from a mean annual temperature curve derived from all of the MARMAP observations at the standard station (see Mountain and Holzwarth, in press). The anomaly value was normalized by dividing it by the standard deviation associated with the fitting of the annual curve. This normalized anomaly indicates the significance of the temperature anomaly, i.e., the number of standard deviations from the mean or expected value.

Data Portrayals

A series of figures which portray some of the more significant features of the physical oceanographic structure are appended. For each cruise, a station plot is followed by computer-generated contour plots of the temperature and salinity distribution for both the surface and the bottom. In the case of temperature, where the seasonal cycle is well defined (Mountain and Holzwarth, in press), standardized anomalies are contoured as well. Anomalies greater than two standard deviations from the mean are hachured. Horizontal and vertical hachuring represent cold and warm anomalies, respectively.

The contour plots were generated using the Interactive Concepts Incorporated Surface3 software package on a VAX 11/785 computer. Since the contouring is done by computer, there are inevitable inadequacies in the output. There may be, therefore, undetectable interpolation/extrapolation errors, especially near the survey boundaries. Hence, one should treat the contoured data as computerized estimates rather than actual observations.

Cross-shelf profiles of both temperature and salinity are included for all transects (A- G) whenever at least four stations were occupied. On some cruises, the transects were extended either onshore or offshore by a few extra stations; but, in order to be consistent and retain a synoptic (less than a few days) representation of the cross-shelf structure, only the standard stations were included in the cross-sectional contour plots. No more than seven stations were included in any contoured section. Axis labels, meters in the vertical and kilometers in the horizontal, were omitted to maximize plotting space on the page.

Finally, after data from each cruise are presented, a set of time- series plots are used to display average temperature and salinity for different layers of the water column and regions of the shelf. Various regions of the shelf are shown in Figure 3. In order to focus on shelf water and to eliminate the overwhelming influence of small slope water intrusions onto the shelf area, water greater than 34 PSU was omitted from these calculations. Each cruise, represented by a single point, is coded by year and plotted on a yearday axis (Figures 250-261). The seasonal cycle is represented by the solid lines along with its associated standard deviation (dashed lines). As explained in Mountain and Holzwarth (in press), this is a multiple linear regression of one, two, and three cycles per year. In their report, the regression is conducted on the surface and bottom values of each MARMAP station but, here, it is presented for large regions of the shelf and layers of the water column. In this way, one may distinguish both seasonal and inter-annual variability of broad scale features.

Acknowledgements

The authors would like to thank Lisa Lierheimer, Dan Patanjo, and all others who helped process the data. Thanks also to David Mountain for providing the seasonal temperature cycle, the associated graphics (Figures 250-261), and for overseeing our work in general.

- Holzwarth, T.J. and J. Manning. 1989. Description of the 1986 oceanographic conditions of the northeast continental shelf. Woods Hole, MA: Northeast Fisheries Center. Reference Document 89-03. Available from: Northeast Fisheries Center; Woods Hole, MA; 02543.
- Kirschner, R.A. 1980. Hydrographic work on MAR-MAP Cruises. Woods Hole, MA: Northeast Fisheries Center. Woods Hole Laboratory Reference Document 80-25. Available from: Northeast Fisheries Center; Woods Hole, MA; 02543.
- Manning, J.P. (unpublished). Middle Atlantic Bight salinity and the influence of local meteorolgic processes. Manuscript available from the author: Northeast Fisheries Center; Woods Hole, MA; 02543.
- Manning, J.P. and L.J. Lierheimer. 1988. Description of the 1987 oceanographic conditions of the northeast continental shelf. Woods Hole, MA: Northeast Fisheries Center. Woods Hole Reference Document 88-01. Available from: Northeast Fisheries Center, Woods Hole, MA; 02543.
- Morse, W.W., M.P. Fahay, and W.G. Smith. 1987. MARMAP surveys of the Continental Shelf from Cape Hatteras, North Carolina, to Cape Sable, Nova Scotia (1977-1984): Atlas No. 2 Annual distribution patterns of fish larvae. Woods Hole, MA: Northeast Fisheries Center. NOAA Technical Memorandum NMFS-F/NEC-47. Available from: Northeast Fisheries Center; Woods Hole, MA; 02543.
- Mountain, D.G. and P.F. Jessen. 1987. Bottom waters of the Gulf of Maine, 1978-1983. J. Mar. Res. 45:319-345
- Mountain, D.G. and T.J. Holzwarth. (in press). The annual cycle of surface and bottom temperature on the Northeast Continental Shelf. Woods Hole, MA: Northeast Fisheries Center. NOAA Technical Memorandum NMFS-F/NEC. Available when published from: Northeast Fisheries Center; Woods Hole, MA; 02543.

- Nickerson, S.R. and D.G. Mountain. 1983. Surface and bottom temperature and bottom salinity distributions on the continental shelf, Cape Hatteras to Cape Sable from MARMAP Cruises, 1977-1982. Woods Hole, MA: Northeast Fisheries Center. Woods Hole Laboratory Reference Document 83-09. Available from: Northeast Fisheries Center; Woods Hole, MA; 02543.
- Patanjo, D., S.R. Nickerson, and F. Steimle. 1982.
 Report on temperature, salinity, and dissolved oxygen measurements made on MARMAP Surveys between October 1977 - December 1978. Woods Hole, MA: Northeast Fisheries Center. Woods Hole Laboratory Reference Document 82-03. MARMAP contribution MED/NEFC 82-11. Available from: Northeast Fisheries Center; Woods Hole, MA; 02543.
- Sherman, K. 1980. MARMAP, a fisheries ecosystem study in the Northwest Atlantic: fluctuations in ichthyoplankton-zooplankton components and their potential for impact on the system. In Advanced Concepts on Ocean Measurements for Marine Biology, eds. F.P. Diermer, F.J. Vernberg, and D.Z. Mirkes, pp. 9-37. Columbia, SC: University of South Carolina Press.
- Sibunka, J.D. and M.J.Silverman. 1984. MARMAP surveys of the continental shelf from Cape Hatteras, North Carolina, to Cape Sable, Nova Scotia (1977-1984): Atlas No. 1 Summary of operations. Woods Hole, MA: Northeast Fisheries Center. NOAA Technical Memorandum NMFS-F/NEC-33. Available from: Northeast Fisheries Center; Woods Hole, MA; 02543,
- Waldhauer, R. (unpublished). Nutrient distributions on the northeast continental shelf: 1977-1985. Manuscript available from the author: Northeast Fisheries Center; Sandy Hook Laboratory; PO Box 428; Highlands, NJ; 07732.
- Zetlin, C. and J. O'Reilly. (unpublished). Chlorophyll distributions on the Northeast Continental Shelf: 1977-1985. Manuscript available from the authors: Northeast Fisheries Center; Sandy Hook Laboratory; PO Box 428; Highlands, NJ; 07732.
- ä.

.

MARMAP DATA COVERAGE

۱.,

Figure 1. Timing of MARMAP sampling, 1977-1987.

Page 5

F

Figure 2. Standard MARMAP stations.

Figure 3. Five regions on the Northeast Continental Shelf: Eastern Gulf of Maine (EGM), Western Gulf of Maine (WGM), Georges Bank (GB), Northern Middle Atlantic Bight (MABN) and Southern Middle Atlantic Bight (MABS).

í.

Figure 5. Surface and bottom temperature (°C) distribution: YUB7702.

217 -1823 -

Page 10

Figure 6. Normalized surface and bottom temperature anomaly: YUB7702. Contours are multiples of the standard deviation for the mean annual temperature curves. Hachured areas are more than two standard deviations above (vertical) or below (horizontal) the ill-year mean.

. .

Page 12

Figure 8. Temperature (°C) transects: YUB7702.

Figure 9. Salinity (PSU) transects: YUB7702.

534 1

Figure 10. Station positions: ARG7701.

Figure 11. Surface and bottom temperature (°C) distribution: ARG7701.

à

: :

Page 16

Figure 12. Normalized surface and bottom temperature anomaly: ARG7701. Contours are multiples of the standard deviation for the mean annual temperature curves. Hachured areas are more than two standard deviations above (vertical) or below (horizontal) the line year mean.

s]

Figure 14. Temperature (°C) transects: ARG7701.

Figure 14. Continued.

Page 20

Figure 15. Salinity (PSU) transects: ARG7701.

· _

Figure 16a. Station positions: KEL7711.

Figure 16b. Station positions: MTM7711.

Page 24

Figure 17a. Surface and bottom temperature (°C) distribution: KEL7711.

Figure 17b. Surface and bottom temperature(°C) distribution: MTM7711.

÷ É

Figure 18a. Normalized surface and bottom temperature anomaly: KEL7711. Contours are multiples of the standard deviation for the mean annual temperature curves. Hachured areas are more than two standard deviations above (vertical) or below (horizontal) the 11-year mean.

Figure 18b. Normalized surface and bottom temperature anomaly: MTM7711. Contours are multiples of the standard deviation for the mean annual temperature curves. Hachured areas are more than two standard deviations above (vertical) or below (horizontal) the 11-year mean.

Page 27

Figure 19a. Surface and bottom salinity (PSU) distribution: KEL7711.

Figure 19b. Surface and bottom salinity (PSU) distribution: MTM7711.

Page 30

Figure 20a. Temperature (°C) transects: KEL7711.

.

Figure 20b. Temperature (°C) transects: MTM7711.

Page 32

Figure 21a. Salinity (PSU) transects: KEL7711.

ł

150

Figure 21b. Salinity (PSU) transects: MTM7711.

Page 33

調査

Figure 22. Station positions: DEL7802.

 $t_{\rm c}$

Figure 24. Normalized surface and bottom temperature anomaly: DEL7802. Contours are multiples of the standard deviation for the mean annual temperature curves. Hachured areas are more than two standard deviations above (vertical) or below (horizontal) the 11-year mean.

Figure 25. Surface and bottom salinity (PSU) distribution: DEL7802.

Page 38

Figure 26. Temperature (°C) transects: DEL7802.

. 1

Figure 26. Continued.

 $q_{i}^{1}=1\cdots$

Page 40

Figure 27. Salinity (PSU) transects: DEL7802.

Figure 27. Continued.

Page 42

R.

Figure 28. Station positions: ARG7804.

Figure 29. Surface and bottom temperature (°C) distribution: ARG7804.

Page 44

Figure 30. Normalized surface and bottom temperature anomaly: ARG7804. Contours are multiples of the standard deviation for the mean annual temperature curves. Hachared areas are more than two standard deviations above (vertical) or below (horizontal) the the year mean.

Figure 31. Surface and bottom salinity (PSU) distribution: ARG7804.

Page 46

÷....

Figure 32. Temperature (°C) transects: ARG7804.

Figure 32. Continued.

Page 47

Figure 33. Salinity (PSU) transects: ARG7804.

Figure 33. Continued.

.

Page 50

d in

1

E.

Figure 34. Station positions: ALB7807.

٠

. .

Page 52

Figure 36. Normalized surface and bottom temperature anomaly: ALB7807. Contours are multiples of the standard deviation for the mean annual temperature curves. Hachured areas are more than two standard deviations above (vertical) or below (horizontal) the li-year mean.

Figure 37. Surface and bottom salinity (PSU) distribution: ALB7807.

Figure 38. Temperature (°C) transects: ALB7807.

Figure 38. Continued.

.

Page 56

Figure 39. Salinity (PSU) transects: ALB7807.

Figure 39. Continued.

Can Bre Sector

[77]

Figure 40. Station positions: BEL7801.

Figure 41. Surface and bottom temperature (°C) distribution: BEL7801.

i.

Page 60

Figure 42. Normalized surface and bottom temperature anomaly: BEL7801. Contours are multiples of the standard deviation for the mean annual temperature curves. Hachured areas are more than two standard deviations above (vertical) or below (horizontal) the 11-year mean.

176

kş,

Figure 43. Surface and bottom salinity (PSU) distribution: BEL7801.

Figure 44. Temperature (°C) transects: BEL7801.

•

Figure 44. Continued.

f.

in. -

Figure 44. Continued.

Figure 45. Salinity (PSU), transects: BEL7801.

i...

 \odot

ni Renj

Figure 45. Continued.

Figure 46. Station positions: BEL7803.

Figure 47. Surface and bottom temperature (°C) distribution: BEL7803.

Figure 48. Normalized surface and bottom temperature anomaly: BEL7803. Contours are multiples of the standard deviation for the mean annual temperature curves. Hachured areas are more than two standard deviations above (vertical) or below (horizontal) the li-year mean.

È.

r r

Ľ

Figure 49. Surface and bottom salinity (PSU) distribution: BEL7803.

Figure 50. Temperature (°C) transects: BEL7803.

Figure 51. Salinity (PSU) transects: BEL7803.

l Kan

Figure 51. Continued.

.*****.

ċ.

Figure 52. Station positions: BEL7804.

:....

Ľ.

67. 1

Figure 54. Normalized surface and bottom temperature anomaly: BEL7804. Contours are multiples of the standard deviation for the mean annual temperature curves. Hachured areas are more than two standard deviations above (vertical) or below (horizontal) the 11-year mean.

Figure 55. Surface and bottom salinity (PSU) distribution: BEL7804.

Figure 56. Temperature (°C) transects: BEL7804.

Figure 57. Salinity (PSU) transects: BEL7804.

Figure 57. Continued.

Figure 58. Station positions: DEL7903.

Figure 59. Surface and bottom temperature (°C) distribution: DEL7903.

Figure 60. Normalized surface and bottom temperature anomaly: DEL7903. Contours are multiples of the standard deviation for the mean annual temperature curves. Hachured areas are more than two standard deviations above (vertical) or below (horizontal) the 11-year mean.

> . روستا

Figure 61. Surface and bottom salinity (PSU) distribution: DEL7903.

Page 86

. I.

Figure 62. Temperature (°C) transects: DEL7903.

r r

Figure 63. Salinity (PSU) transects: DEL7903.

Figure 63. Continued.

e L

K.

Figure 64. Station positions: DEL7905.

Page 92

Figure 66. Normalized surface and bottom temperature anomaly: DEL7905. Contours are multiples of the standard deviation for the mean annual temperature curves. Hachared areas are more than two standard deviations above (vertical) or below (horizontal) the the year mean.

-

Figure 67. Surface and bottom salinity (PSU) distribution: DEL7905.

TRANSECT_C

5-12-79

50

150

TRANSECT_D

5-18-79

50

20

50

, ,

Figure 68. Temperature (°C) transects: DEL7905.

00

Figure 68. Continued.

٠.

Page 95

٤,

Figure 68. Continued.

Figure 69. Salinity (PSU) transects: DEL7905.

C P

1-45

577. 1

200

50

25

-1 - 1 - s

Figure 69. Continued.

Figure 70. Station positions: ALB7906.

Figure 72. Normalized surface and bottom temperature anomaly: ALB7906. Contours are multiples of the standard deviation for the mean annual temperature curves. Hack areas are more than two standard deviations above (vertical) or below (horizontal) the standard deviations above (ver

Page 104

b.:

Figure 74. Temperature (°C) transects: ALB7906.

7-12-79

50

Figure 74. Continued.

50

200

Page 106

Figure 75. Salinity (PSU) transects: ALB7906.

Figure 75. Continued.

Figure 75. Continued.

Figure 76. Station positions: BEL7901.

Page 109

Page 110

Figure 77. Surface and bottom temperature (°C) distribution: BEL7901.

Figure 78. Normalized surface and bottom temperature anomaly: BEL7901. Contours are multiples of the standard deviation for the mean annual temperature curves. Hachured areas are more than two standard deviations above (vertical) or below (horizontal the lite year mean.

Figure 79. Surface and bottom salinity (PSU) distribution: BEL7901.

Figure 80. Temperature (°C) transects: BEL7901.

L. 2

Figure 80. Continued.

Figure 81. Salinity (PSU) transects: BEL7901.

1

i i -

Figure 81. Continued.

ÀL7911

STATIONS OCCUPIED

Page 117

Figure 83. Surface and bottom temperature (°C) distribution: ALB7911.

64°.

Figure 84. Normalized surface and bottom temperature anomaly: ALB7911. Contours are multiples of the standard deviation for the mean annual temperature curves. Hachured areas are more than two standard deviations above (vertical) or below (horizontal) the 11-year mean.

E.

Figure 85. Surface and bottom salinity (PSU) distribution: ALB7911.

Figure 86. Temperature (°C) transects: ALB7911.

ľ.

Figure 86. Continued.

Figure 86. Continued.

Page 124.

E

Figure 87. Salinity (PSU) transects: ALB7911.

Figure 87. Continued.

Page 126

ß

Figure 87. Continued.

Figure 88. Station positions: ALB7913.

Figure 90. Normalized surface and bottom temperature anomaly: ALB7913. Contours are multiples of the standard deviation for the mean annual temperature curves. Hachured areas are more than two standard deviations above (vertical) or below (horizontal) the 11-year mean.

r.

Ē.

Figure 90. Continued.

Figure 91. Surface and bottom salinity (PSU) distribution: ALB7913.

 \sim

Figure 92. Temperature (°C) transects: ALB7913.

Į:

Page 134

.). 19

· Figure 93. Salinity (PSU) transects: ALB7913.

FF

ŀ.

Figure 93. Continued.

[]

Figure 94. Station positions: WIE8002.

 $\{a_i\}_{i=1}^{n-1} \{a_i\}_{i=1}^{n-1} \{a_i\}_{i=1$

Figure 95. Surface and bottom temperature (°C) distribution: WIE8002.

Figure 96. Normalized surface and bottom temperature anomaly: WIE8002. Contours are multiples of the standard deviation for the mean annual temperature curves. Hachared areas are more than two standard deviations above (vertical) or below (horizontal) the tage of the mean.

S.

2

Figure 97. Surface and bottom salinity (PSU) distribution: WIE8002.

Page 140

1.

Figure 98. Temperature (°C) transects: WIE8002.

. .

Ê

Figure 99. Salinity (PSU) transects: WIE8002.

<u>81 - 19</u>

fit.

Figure 100. Station positions: ALB8002.

Figure 101. Surface and bottom temperature (°C) distribution: ALB8002.

Page 144

Figure 102. Normalized surface and bottom temperature anomaly: ALB8002. Contours are multiples of the standard deviation for the mean annual temperature curves. Hachured areas are more than two standard deviations above (vertical) or below (horizontal) the li-year mean.

Figure 103. Surface and bottom salinity (PSU) distribution: ALB8002.

Figure 104. Temperature (°C) transects: ALB8002.

. .

Figure 104. Continued.

.

4

Figure 104. Continued.

Figure 105. Salinity (PSU) transects: ALB8002.

Page 150

 Solution
 Solution
 Solution
 Solution
 Solution

 100
 SAL N.T.
 SAL N.T.

 100
 SAL N.T.

 150
 SAL N.T.

time and

Figure 105. Continued.

Page 152

i.

Figure 106. Station positions: EVR8001.

Figure 107. Surface and bottom temperature (°C) distribution: EVR8001.

цį.

Figure 108. Normalized surface and bottom temperature anomaly: EVR8001. Contours are multiples of the standard deviation for the mean annual temperature curves. Hachured areas are more than two standard deviations above (vertical) or below (horizontal) the 11year mean.

1577

13

Figure 109. Surface and bottom salinity (PSU) distribution: EVR8001.

Page 156

Figure 110. Temperature (°C) transects: EVR8001.

. I

Figure 110. Continued.

Figure 111. Salinity (PSU) transects: EVR8001.

. Art

Figure 111. Continued.

6

Figure 112. Station positions: DEL8003.

Page 161

Figure 113. Surface and bottom temperature (°C) distribution: DEL8003.

Figure 114. Normalized surface and bottom temperature anomaly: DEL8003. Contours are multiples of the standard deviation for the mean annual temperature curves. Hachured areas are more than two standard deviations above (vertical) or below (horizontal) the 11-year mean.

Т.

ļ.

Figure 115. Surface and bottom salinity (PSU) distribution: DEL8003.

Page 164

Figure 116. Temperature (°C) transects: DEL8003.

Figure 116. Continued.

.) i

Page 165

Page 166

Figure 117. Salinity (PSU) transects: DEL8003.

Figure 117. Continued.

Figure 118. Station positions: EVR8004.

Page 170

1.2

(NOT ENOUGH POINTS TO CONTOUR BOTTOM ANOMALIES)

Figure 120. Normalized surface and bottom temperature anomaly: EVR8004. Contours are multiples of the standard deviation for the mean annual temperature curves. Hachured areas are more than two standard deviations above (vertical) or below (horizontal) the 11-year mean.

Figure 121. Surface and bottom salinity (PSU) distribution: EVR8004.

621

10

Figure 122. Temperature (°C) transects: EVR8004.

Figure 123. Salinity (PSU) transects: EVR8004.

Page 173

Page 174

E.

16.52

Figure 124. Station positions: EVR8006.

Figure 125. Surface and bottom temperature (°C) distribution: EVR8006.

Page 176

Figure 126. Normalized surface and bottom temperature anomaly: EVR8006. Contours are multiples of the standard deviation for the mean annual temperature curves. Hachured areas are more than two standard deviations above (vertical) or below (horizontal) the 11-year mean.

Figure 128. Temperature (°C) transects: EVR8006.

Figure 129. Salinity (PSU) transects: EVR8006.

Figure 129. Continued.

Figure 130. Station positions: ALB8010.

Figure 131. Surface and bottom temperature (°C) distribution: ALB8010.

Figure 132. Normalized surface and bottom temperature anomaly: ALB8010. Contours are multiples of the standard deviation for the mean annual temperature curves. Hachured areas are more than two standard deviations above (vertical) or below (horizontal) the 11-year mean.

ĒΖ

Figure 133. Surface and bottom salinity (PSU) distribution: ALB8010.

Figure 134. Temperature (°C) transects: ALB8010.

Figure 134. Continued.

F

Figure 135. Salinity (PSU) transects: ALB8010.

.

Figure 135. Continued.

Figure 135. Continued.

Figure 136. Station positions: ALB8012.

Figure 138. Normalized surface and bottom temperature anomaly: ALB8012. Contours are multiples of the standard deviation for the mean annual temperature curves. Hachured areas are more than two standard deviations above (vertical) or below (horizontal) the Use year mean.

ie.

۳

 r_{rec}

Figure 139. Surface and bottom salinity (PSU) distribution: ALB8012.

Figure 140. Temperature (°C) transects: ALB8012.

.

Figure 140. Continued.

Seator Las

177

Figure 141. Salinity (PSU) transects: ALB8012.

Figure 141. Continued.

Figure 141. Continued.

Figure 142. Station positions: ALB8101.

Figure 143. Surface and bottom temperature (°C) distribution: ALB8101.

Figure 144. Normalized surface and bottom temperature anomaly: ALB8101. Contours are multiples of the standard deviation for the mean annual temperature curves. Hachured areas are more than two standard deviations above (vertical) or below (horizontal) the 11-year mean.

Ĕ

Figure 145. Surface and bottom salinity (PSU) distribution: ALB8101.

Figure 146. Temperature (°C) transects: ALB8101.

Figure 146. Continued.

4

•

. . . .

Figure 146. Continued.

. .

Figure 147. Salinity (PSU) transects: ALB8101.

Figure 147. Continued.

Figure 147. Continued.

Figure 148. Station positions: KEL8103.

Figure 149. Surface and bottom temperature (°C) distribution: KEL8103.

Page 214

Figure 150. Normalized surface and bottom temperature anomaly: KEL8103. Contours are multiples of the standard deviation for the mean annual temperature curves. Hachured areas are more than two standard deviations above (vertical) or below (horizontal) the 11year mean.

57.

(-* -*

Figure 151. Surface and bottom salinity (PSU) distribution: KEL8103.

Figure 152. Temperature (°C) transects: KEL8103.

Figure 152. Continued.

Figure 153. Salinity (PSU) transects: KEL8103.

Page 219

Figure 153. Continued.

.

Figure 154. Station positions: DEL8103.

.

Figure 155. Surface and bottom temperature (°C) distribution: DEL8103.

Page 222

Figure 156. Normalized surface and bottom temperature anomaly: DEL8103. Contours are multiples of the standard deviation for the mean annual temperature curves. Hachured areas are more than two standard deviations above (vertical) or below (horizontal) the 11-year mean.

Figure 158. Temperature (°C) transects: DEL8103.

Page 225

and the

eer.

 \mathbb{N}

Figure 158. Continued.

Figure 159. Salinity (PSU) transects: DEL8103.

Ē.

Figure 159. Continued.

t.

Figure 160. Station positions: ALB8114.

Figure 162. Normalized surface and bottom temperature anomaly: ALB8114. Contours are multiples of the standard deviation for the mean annual temperature curves. Hachured areas are more than two standard deviations above (vertical) or below (horizontal) the li-year mean.

Figure 164. Temperature (°C) transects: ALB8114.

Figure 165. Salinity (PSU) transects: ALB8114.

<u>م</u>

Page 236

Figure 166. Station positions: ALB8202.

Figure 207. Continued.

Figure 168. Normalized surface and bottom temperature anomaly: ALB8202. Contours are multiples of the standard deviation for the mean annual temperature curves. Hachured areas are more than two standard deviations above (vertical) or below (horizontal) the 11-year mean.

Figure 169. Surface and bottom salinity (PSU) distribution: ALB8202.

Page 241

Figure 170. Temperature (°C) transects: ALB8202.

Page 242

Figure 170. Continued.

Figure 170. Continued.

igure 170. Continued.

Figure 171. Salinity (PSU) transects: ALB8202.

Figure 171. Continued.

Figure 171. Continued.

Figure 172. Station positions: DEL8203.

Figure 174. Normalized surface and bottom temperature anomaly: DEL8203. Contours are multiples of the standard deviation for the mean annual temperature curves. Hachured areas are more than two standard deviations above (vertical) or below (horizontal) the 11-year mean.

Page 250

Figure 176. Temperature (°C) transects: DEL8203.

Figure 176. Continued.

Figure 177. Salinity (PSU) transects: DEL8203.

Гл. 1

<u>i</u>...

Figure 177. Continued.

Figure 178. Station positions: DEL8209.

Page 256

Figure 179. Surface and bottom temperature (°C) distribution: DEL8209.

1.1

Figure 180. Normalized surface and bottom temperature anomaly: DEL8209.Contours are multiples of the standard deviation for the mean annual temperature curves. Hachured areas are more than two standard deviations above (vertical) or below (horizontal) the 11-year mean.

Page 258

Ę.

Figure 181. Surface and bottom salinity (PSU) distribution: DEL8209.

Figure 182. Temperature (°C) transects: DEL8209.

Figure 182. Continued.

Figure 183. Salinity (PSU) transects: DEL8209.

Page 262

Figure 183. Continued.

Figure 184. Station positions: DEL8301.

Figure 185. Surface and bottom temperature (°C) distribution: DEL8301.

Figure 186. Normalized surface and bottom temperature anomaly: DEL8301.Contours are multiples of the standard deviation for the mean annual temperature curves. Hachured areas are more than two standard deviations above (vertical) or below (horizontal) the 11-year mean.

Figure 187. Surface and bottom salinity (PSU) distribution: DEL8301.

Figure 188. Temperature (°C) transects: DEL8301.

Figure 189. Salinity (PSU) transects: DEL8301.

Figure 190. Station positions: ALB8304.

Page 270

Figure 191. Surface and bottom temperature (°C) distribution: ALB8304.

Figure 192. Normalized surface and bottom temperature anomaly: ALB8304.Contours are multiples of the standard deviation for the mean annual temperature curves. Hachured areas are more than two standard deviations above (vertical) or below (horizontal) the 11-year mean.

6

F.

Figure 193. Surface and bottom salinity (PSU) distribution: ALB8304.

Figure 194. Temperature (°C) transects: ALB8304.

Figure 194. Continued.

Figure 194. Continued.

Figure 195. Salinity (PSU) transects: ALB8304.

Figure 195. Continued.

Page 277

Figure 195. Continued.

Figure 196. Station positions: DEL8309.

Figure 197. Surface and bottom temperature (°C) distribution: DEL8309.

Figure 198. Normalized surface and bottom temperature anomaly: DEL8309.Contours are multiples of the standard deviation for the mean annual temperature curves. Hachured areas are more than two standard deviations above (vertical) or below (horizontal) the 11-year mean.

Page 282

Figure 199. Surface and bottom salinity (PSU) distribution: DEL8309.

Figure 200. Temperature (°C) transects: DEL8309.

Figure 200. Continued.

... ...

Figure 200. Continued.

ne 200. Continued.

Figure 201. Salinity (PSU) transects: DEL8309.

;

Figure 201. Continued.

Ę.

Figure 202. Station positions: DEL8401.

Figure 203. Surface and bottom temperature (°C) distribution: DEL8401.

Figure 204. Normalized surface and bottom temperature anomaly: DEL8401.Contours are multiples of the standard deviation for the mean annual temperature curves. Hachured areas are more than two standard deviations above (vertical) or below (horizontal) the 11-year mean.

Figure 205. Surface and bottom salinity (PSU) distribution: DEL8401.

 C^{rr}

Figure 206. Temperature (°C) transects: DEL8401.

n.

Figure 206. Continued.

Figure 206. Continued.

Figure 207. Salinity (PSU) transects: DEL8401.

5...

Figure 208. Station positions: ALB8403.

Page 300

Figure 209. Surface and bottom temperature (°C) distribution: ALB8403.

de sta

Figure 210. Normalized surface and bottom temperature anomaly: ALB8403.Contours are multiples of the standard deviation for the mean annual temperature curves. Hachured areas are more than two standard deviations above (vertical) or below (horizontal) the 11-year mean.

Figure 211. Surface and bottom salinity (PSU) distribution: ALB8403.

Figure 212. Temperature (°C) transects: ALB8403.

Page 304

ф,

Figure 212. Continued.

Figure 212. Continued.

Figure 213. Salinity (PSU) transects: ALB8403.

Figure 213. Continued.

ľ.

2.9.

Figure 213. Continued.

Figure 214. Station positions: DEL8409.

Figure 215. Surface and bottom temperature (°C) distribution: DEL8409.

177

Figure 216. Normalized surface and bottom temperature anomaly: DEL8409. Contours are multiples of the standard deviation for the mean annual temperature curves. Hachured areas are more than two standard deviations above (vertical) or below (horizontal) the 11-year mean.

Figure 218. Continued.

勝所 転 一 死 ・

Figure 219. Salinity (PSU) transects: DEL8409.

Figure 219. Continued.

Page 318

Figure 221. Surface and bottom temperature (°C) distribution: DEL8501.

Figure 222. Normalized surface and bottom temperature anomaly: DEL8501. Contours are multiples of the standard deviation for the mean annual temperature curves. Hachured areas are more than two standard deviations above (vertical) or below (horizontal) the 11-year mean.

Page 320

Figure 223. Surface and bottom salinity (PSU) distribution: DEL8501.

 $\sum_{i=1}^{n-1}$

Figure 224. Temperature (°C) transects: DEL8501.

Figure 224. Continued.

Figure 225. Salinity (PSU) transects: DEL8501.

Figure 225. Continued.

Figure 226. Station positions: ALB8504.

Figure 228. Normalized surface and bottom temperature anomaly: DEL8503. Contours are multiples of the standard deviation for the mean annual temperature curves. Hachured areas are more than two standard deviations above (vertical) or below (horizontal) the 11-year mean.

Page 328

Figure 229. Surface and bottom salinity (PSU) distribution: DEL8503.

E a constante da constante constante da cons

Figure 230. Temperature (°C) transects: DEL8503.

Figure 230. Continued.

Figure 231. Salinity (PSU) transects: DEL8503.

цĥ,

TRANSECT_G

4- 3-85

CC

50

Figure 231. Continued.

50

4-85

00

150

50

33.5

Page 332

Figure 232. Station positions: ALB8504.

Page 334

Figure 233. Surface and bottom temperature (°C) distribution: ALB8504.

ايديم. ا عنب عنب

Figure 234. Normalized surface and bottom temperature anomaly: ALB8504. Contours are multiples of the standard deviation for the mean annual temperature curves. Hachured areas are more than two standard deviations above (vertical) or below (horizontal) the 11-year mean.

Page 336

Figure 235. Surface and bottom salinity (PSU) distribution: ALB8504.

Figure 236. Temperature (°C) transects: ALB8504.

1.6.2.3

Figure 236. Continued.

Figure 237. Salinity (PSU) transects: ALB8504.

Figure 237. Continued.

Figure 237. Continued.

5-10-85

Figure 238. Station positions: DEL8507.

Figure 239. Surface and bottom temperature (°C) distribution: DEL8507.

Figure 240. Normalized surface and bottom temperature anomaly: DEL8507. Contours are multiples of the standard deviation for the mean annual temperature curves. Hachured areas are more than two standard deviations above (vertical) or below (horizontal) the 11-year mean.

Figure 241. Surface and bottom salinity (PSU) distribution: DEL8507.

23 - 전

Figure 242. Temperature (°C) transects: DEL8507.

Figure 242. Continued.

Figure 242. Continued.

Figure 243. Salinity (PSU) transects: DEL8507.

Figure 243. Continued.

Figure 243. Continued.

Figure 244. Station positions: DEL8510.

Figure 245. Surface and bottom temperature (°C) distribution: DEL8510.

Page 354

Figure 246. Normalized surface and bottom temperature anomaly: DEL8510. Contours are multiples of the standard deviation for the mean annual temperature curves. Hachured areas are more than two standard deviations above (vertical) or below (horizontal) the 11-year mean.

Figure 247. Surface and bottom salinity (PSU) distribution: DEL8510.

Figure 248. Temperature (°C) transects: DEL8510.

-

Figure 248. Continued.

÷.

ta data

Page 359

Figure 249. Salinity (PSU) transects: DEL8510.

Figure 249. Continued.

 $100 \begin{array}{c} 113 \\ -73 \\ -$

Figure 249. Continued.

Figure 250. Mean values of temperature and salinity for the surface layer (0-50 m) in the western sector of the Gulf of Maine (1977-1987). The bold and dashed lines in the lower panel represent the mean and standard deviation of temperature as obtained by Mountain and Holzwarth (in press).

1

Figure 251. Mean values of temperature and salinity for the subsurface layer (50-100 m) in the western sector of the Gulf of Maine.

Figure 252. Mean values of temperature and salinity for the bottom layer (>100 m) in the western sector of the Gulf of Maine.

.

Figure 253. Mean values of temperature and salinity for the surface layer (0-50 m) in the eastern sector of the Gulf of Maine (1977-1987).

С

Figure 255. Mean values of temperature and salinity for the bottom layer (>100 m) in the western sector of the Gulf of Maine.

Figure 256. Mean values of temperature and salinity for the surface layer (0-30 m) on Georges Bank (1977-1987).

Page 370

NORTHERN MAB (0-30M)

Figure 258. Mean values of temperature and salinity for the surface layer (0-30 m) in the northern sector of the Middle Atlantic Bight.

: الذ الذي

Figure 259. Mean values of temperature and salinity for the subsurface layer (30-100 m) in the northern sector of the Middle Atlantic Bight.

Page 372

Figure 260. Mean values of temperature and salinity for the surface layer (0-30 m) in the southern sector of the Middle Atlantic Bight.

Figure 261. Mean values of temperature and salinity for the subsurface layer (30-100 m) in the southern sector of the Middle Atlantic Bight.